• musclemecca bodybuilding forums does not sell or endorse any bodybuilding gear, products or supplements.
    Musclemecca has no affiliation with advertisers; they simply purchase advertising space here. If you have questions go to their site and ask them directly.
    Advertisers are responsible for the content in their forums.
    DO NOT SELL ILLEGAL PRODUCTS ON OUR FORUM

What are muscle bellies ?

Robcardu

Robcardu

Mecca V.I.P.
VIP
Joined
Jul 11, 2006
Messages
10,838
Points
38
^^that looks like one of those boring movie discussion between Line and Tim. :49:
 
Zigurd

Zigurd

Mecca V.I.P.
VIP
Joined
Sep 9, 2007
Messages
3,492
Points
38
More or less, its the center of the muscle. For example, on the biceps the muscle belly roundness would refer to how full and round the muscle appears and this is based on insertions of the muscle. Someone with nice round bellies has good development and genetic insertions.

You must spread some Reputation around before giving it to The Creator again.

Thanks bro.
 
Duality

Duality

Mecca V.I.P.
VIP
Joined
Feb 14, 2008
Messages
3,439
Points
38
what are muscle bellies?


ironman_silviosamuel-1.jpg



nuff said
 
tkD

tkD

Administrator
Staff
VIP
Member
Joined
Mar 7, 2008
Messages
21,168
Points
113
The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak negative and peak positive velocities as well as peak powers of the muscle-tendon complexes of SO, GA, and PL were typically higher than those of the muscle bellies. Positive work done by the muscle-tendon complexes exceeded the positive work done by the muscle bellies. GA and PL tendons stored more mechanical energy than the SO tendon. The contributions of the elastic energy stored in the tendons to the positive work done by the muscle-tendon complexes decreased with increasing speeds of locomotion for two of the three cats studied and did not change for the third one. These contributions equaled 50-21%, 30-14%, and 25-18% for the three cats, respectively. The results of this study suggest that energy absorption and release by the tendons of cat SO, GA, and PL make up a substantial part of the total energy absorbed and generated by the corresponding muscle-tendon complexes.The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak negative and peak positive velocities as well as peak powers of the muscle-tendon complexes of SO, GA, and PL were typically higher than those of the muscle bellies. Positive work done by the muscle-tendon complexes exceeded the positive work done by the muscle bellies. GA and PL tendons stored more mechanical energy than the SO tendon. The contributions of the elastic energy stored in the tendons to the positive work done by the muscle-tendon complexes decreased with increasing speeds of locomotion for two of the three cats studied and did not change for the third one. These contributions equaled 50-21%, 30-14%, and 25-18% for the three cats, respectively. The results of this study suggest that energy absorption and release by the tendons of cat SO, GA, and PL make up a substantial part of the total energy absorbed and generated by the corresponding muscle-tendon complexes.The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak negative and peak positive velocities as well as peak powers of the muscle-tendon complexes of SO, GA, and PL were typically higher than those of the muscle bellies. Positive work done by the muscle-tendon complexes exceeded the positive work done by the muscle bellies. GA and PL tendons stored more mechanical energy than the SO tendon. The contributions of the elastic energy stored in the tendons to the positive work done by the muscle-tendon complexes decreased with increasing speeds of locomotion for two of the three cats studied and did not change for the third one. These contributions equaled 50-21%, 30-14%, and 25-18% for the three cats, respectively. The results of this study suggest that energy absorption and release by the tendons of cat SO, GA, and PL make up a substantial part of the total energy absorbed and generated by the corresponding muscle-tendon complexes.



The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak negative and peak positive velocities as well as peak powers of the muscle-tendon complexes of SO, GA, and PL were typically higher than those of the muscle bellies. Positive work done by the muscle-tendon complexes exceeded the positive work done by the muscle bellies. GA and PL tendons stored more mechanical energy than the SO tendon. The contributions of the elastic energy stored in the tendons to the positive work done by the muscle-tendon complexes decreased with increasing speeds of locomotion for two of the three cats studied and did not change for the third one. These contributions equaled 50-21%, 30-14%, and 25-18% for the three cats, respectively. The results of this study suggest that energy absorption and release by the tendons of cat SO, GA, and PL make up a substantial part of the total energy absorbed and generated by the corresponding muscle-tendon complexes.The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak negative and peak positive velocities as well as peak powers of the muscle-tendon complexes of SO, GA, and PL were typically higher than those of the muscle bellies. Positive work done by the muscle-tendon complexes exceeded the positive work done by the muscle bellies. GA and PL tendons stored more mechanical energy than the SO tendon. The contributions of the elastic energy stored in the tendons to the positive work done by the muscle-tendon complexes decreased with increasing speeds of locomotion for two of the three cats studied and did not change for the third one. These contributions equaled 50-21%, 30-14%, and 25-18% for the three cats, respectively. The results of this study suggest that energy absorption and release by the tendons of cat SO, GA, and PL make up a substantial part of the total energy absorbed and generated by the corresponding muscle-tendon complexes.The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak negative and peak positive velocities as well as peak powers of the muscle-tendon complexes of SO, GA, and PL were typically higher than those of the muscle bellies. Positive work done by the muscle-tendon complexes exceeded the positive work done by the muscle bellies. GA and PL tendons stored more mechanical energy than the SO tendon. The contributions of the elastic energy stored in the tendons to the positive work done by the muscle-tendon complexes decreased with increasing speeds of locomotion for two of the three cats studied and did not change for the third one. These contributions equaled 50-21%, 30-14%, and 25-18% for the three cats, respectively. The results of this study suggest that energy absorption and release by the tendons of cat SO, GA, and PL make up a substantial part of the total energy absorbed and generated by the corresponding muscle-tendon complexes.


haahhahahahahahahhaahhahahahahahahahahahahahahahahha

:49::49:
 
PrinceVegeta

PrinceVegeta

Mecca V.I.P.
VIP
Joined
Apr 7, 2007
Messages
10,156
Points
38
:rofl3: at huge explanation no one read, and nice pic Duality, he has some crazy musclebellies
 
P

Pain

............
VIP
Joined
Jun 27, 2006
Messages
13,545
Points
38
More or less, its the center of the muscle. For example, on the biceps the muscle belly roundness would refer to how full and round the muscle appears and this is based on insertions of the muscle. Someone with nice round bellies has good development and genetic insertions.


Frank Zane = long muscle bellies.

2czzwaq-2.jpg


Dillet = long and full muscle bellies

szwo5j-2.jpg


Kamili = Short Muscle Bellies

KingKamali-2.jpg
 
tim290280

tim290280

Mecca V.I.P.
VIP
Joined
Jul 13, 2006
Messages
9,163
Points
38
The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak negative and peak positive velocities as well as peak powers of the muscle-tendon complexes of SO, GA, and PL were typically higher than those of the muscle bellies. Positive work done by the muscle-tendon complexes exceeded the positive work done by the muscle bellies. GA and PL tendons stored more mechanical energy than the SO tendon. The contributions of the elastic energy stored in the tendons to the positive work done by the muscle-tendon complexes decreased with increasing speeds of locomotion for two of the three cats studied and did not change for the third one. These contributions equaled 50-21%, 30-14%, and 25-18% for the three cats, respectively. The results of this study suggest that energy absorption and release by the tendons of cat SO, GA, and PL make up a substantial part of the total energy absorbed and generated by the corresponding muscle-tendon complexes.The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak negative and peak positive velocities as well as peak powers of the muscle-tendon complexes of SO, GA, and PL were typically higher than those of the muscle bellies. Positive work done by the muscle-tendon complexes exceeded the positive work done by the muscle bellies. GA and PL tendons stored more mechanical energy than the SO tendon. The contributions of the elastic energy stored in the tendons to the positive work done by the muscle-tendon complexes decreased with increasing speeds of locomotion for two of the three cats studied and did not change for the third one. These contributions equaled 50-21%, 30-14%, and 25-18% for the three cats, respectively. The results of this study suggest that energy absorption and release by the tendons of cat SO, GA, and PL make up a substantial part of the total energy absorbed and generated by the corresponding muscle-tendon complexes.The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak negative and peak positive velocities as well as peak powers of the muscle-tendon complexes of SO, GA, and PL were typically higher than those of the muscle bellies. Positive work done by the muscle-tendon complexes exceeded the positive work done by the muscle bellies. GA and PL tendons stored more mechanical energy than the SO tendon. The contributions of the elastic energy stored in the tendons to the positive work done by the muscle-tendon complexes decreased with increasing speeds of locomotion for two of the three cats studied and did not change for the third one. These contributions equaled 50-21%, 30-14%, and 25-18% for the three cats, respectively. The results of this study suggest that energy absorption and release by the tendons of cat SO, GA, and PL make up a substantial part of the total energy absorbed and generated by the corresponding muscle-tendon complexes.
Robcardu said:
^^that looks like one of those boring movie discussion between Line and Tim. :49:
We would have used appropriate punctuation to make the post more ledgible.
 
Hypocrisy86

Hypocrisy86

Mecca V.I.P.
VIP
Joined
Jul 13, 2006
Messages
15,192
Points
48
^ lol,. yep.
Muscle bellies with hot chicks woot
 

MuscleMecca Crew

Mecca Staff
Top