philosopher
Mecca V.I.P.
VIP
- Joined
- Jul 12, 2006
- Messages
- 2,643
- Points
- 38
If you consider taking tribulus terrestris read this
Short term impact of Tribulus terrestris intake on doping control analysis of endogenous steroids.
Saudan C, Baume N, Emery C, Strahm E, Saugy M.
Swiss Laboratory for Doping Analyses, Institut Universitaire de Médecine Légale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Chemin des Croisettes 22, 1066 Epalinges, Switzerland.
Tribulus terrestris is a nutritional supplement highly debated regarding its physiological and actual effects on the organism. The main claimed effect is an increase of testosterone anabolic and androgenic action through the activation of endogenous testosterone production. Even if this biological pathway is not entirely proven, T. terrestris is regularly used by athletes. Recently, the analysis of two female urine samples by GC/C/IRMS (gas chromatography/combustion/isotope-ratio-mass-spectrometry) conclusively revealed the administration of exogenous testosterone or its precursors, even if the testosterone glucuronide/epitestosterone glucuronide (T/E) ratio and steroid marker concentrations were below the cut-off values defined by World Anti-Doping Agency (WADA). To argue against this adverse analytical finding, the athletes recognized having used T. terrestris in their diet. In order to test this hypothesis, two female volunteers ingested 500mg of T. terrestris, three times a day and for two consecutive days. All spot urines were collected during 48h after the first intake. The (13)C/(12)C ratio of ketosteroids was determined by GC/C/IRMS, the T/E ratio and DHEA concentrations were measured by GC/MS and LH concentrations by radioimmunoassay. None of these parameters revealed a significant variation or increased above the WADA cut-off limits. Hence, the short-term treatment with T. terrestris showed no impact on the endogenous testosterone metabolism of the two subjects.
http://www.ncbi.nlm.nih.gov/pubmed/18282674
The effects of Tribulus terrestris on body composition and exercise performance in resistance-trained males.
Antonio J, Uelmen J, Rodriguez R, Earnest C.
Human Performance Laboratory, University of Nebraska, Kearney, NE 68849-3101, USA.
The purpose of this study was to determine the effects of the herbal preparation Tribulus terrestris (tribulus) on body composition and exercise performance in resistance-trained males. Fifteen subjects were randomly assigned to a placebo or tribulus (3.21 mg per kg body weight daily) group. Body weight, body composition, maximal strength, dietary intake, and mood states were determined before and after an 8-week exercise (periodized resistance training) and supplementation period. There were no changes in body weight, percentage fat, total body water, dietary intake, or mood states in either group. Muscle endurance (determined by the maximal number of repetitions at 100-200% of body weight) increased for the bench and leg press exercises in the placebo group (p <.05; bench press +/-28.4%, leg press +/-28.6%), while the tribulus group experienced an increase in leg press strength only (bench press +/-3.1%, not significant; leg press +/-28.6%, p <.05). Supplementation with tribulus does not enhance body composition or exercise performance in resistance-trained males.
http://www.ncbi.nlm.nih.gov/pubmed/10861339
The aphrodisiac herb Tribulus terrestris does not influence the androgen production in young men.
Neychev VK, Mitev VI.
Department of Chemistry and Biochemistry, Medical University, 2 Zdrave str., Sofia-1431, Bulgaria. neychev@dir.bg
OBJECTIVE: The aim of the current study is to investigate the influence of Tribulus terrestris extract on androgen metabolism in young males. DESIGN AND METHODS: Twenty-one healthy young 20-36 years old men with body weight ranging from 60 to 125 kg were randomly separated into three groups-two experimental (each n=7) and a control (placebo) one (n=7). The experimental groups were named TT1 and TT2 and the subjects were assigned to consume 20 and 10 mg/kg body weight per day of Tribulus terrestris extract, respectively, separated into three daily intakes for 4 weeks. Testosterone, androstenedione and luteinizing hormone levels in the serum were measured 24 h before supplementation (clear probe), and at 24, 72, 240, 408 and 576 h from the beginning of the supplementation. RESULTS: There was no significant difference between Tribulus terrestris supplemented groups and controls in the serum testosterone (TT1 (mean+/-S.D.: 15.75+/-1.75 nmol/l); TT2 (mean+/-S.D.: 16.32+/-1.57 nmol/l); controls (mean+/-S.D.: 17.74+/-1.09 nmol/l) (p>0.05)), androstenedione (TT1 (mean+/-S.D.: 1.927+/-0.126 ng/ml); TT2 (mean+/-S.D.: 2.026+/-0.256 ng/ml); controls (mean+/-S.D.: 1.952+/-0.236 ng/ml) (p>0.05)) or luteinizing hormone (TT1 (mean+/-S.D.: 4.662+/-0.274U/l); TT2 (mean+/-S.D.: 4.103+/-0.869U/l); controls (mean+/-S.D.: 4.170+/-0.406U/l) (p>0.05)) levels. All results were within the normal range. The findings in the current study anticipate that Tribulus terrestris steroid saponins possess neither direct nor indirect androgen-increasing properties. The study will be extended in the clarifying the probable mode of action of Tribulus terrestris steroid saponins.
http://www.ncbi.nlm.nih.gov/pubmed/15994038?dopt=Abstract